Deep Learning 활용 사례
Computer Vision Tasks (1)
- No object Just pixels
- Semantic Segmentation
- CAT | GRASS | TREE ..
- Semantic Segmentation
- Single object
- Classfication
- CAT
- Classfication + localization
- CAT
- Classfication
- Multiple objects
- Object detection : Videos ..
- CAT | DOG | DUCK
- Instance segmentation
- CAT1, CAT2, DOG, DUCK
- Object detection : Videos ..
Computer Vision Tasks (2) Obtical Character Recognition
- 주민등록증
- 이름
- 주민번호
- 주소
- 발급일자
- 발급기관
- 상품
- 상품명
- 회사
- etc.
Computer Vision Tasks (3) Motion Capture without Marker
- Object detection
- etc.
Natural Language Processing Tasks
- Language generation
- Answering questions
- Text classfication
- Sentiment analysis
- Machine translation
- 예: ChatGPT
Multi-Modal Tasks (1) Image Generation (text to image)
- Multi-Modal : Text + Vision + Audio + etc.
- script : "A person half Yoda half Gandalf"
- process : Embedding -> Embedding + DM - Denoise + ... + -> result(image)
- script : "A person half Yoda half Gandalf"
Multi-Modal Tasks (2) Video Generation (text to video)
- 예 : Sora AI
출처 : 메타코드M
'Deep Learning > PyTorch & Deep Learning' 카테고리의 다른 글
[실습] PyTorch 기초 - Dataset과 DataLoader (0) | 2025.01.05 |
---|---|
[실습] PyTorch 기초 - Tensor (0) | 2025.01.02 |
Deep Learning 실무 기초 개념 (0) | 2025.01.02 |
Deep Learning과 Neural Network (0) | 2025.01.01 |
Deep Learning이란 무엇인가? (0) | 2025.01.01 |